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ABSTRACT
We construct compactly supported wavelet bases satisfying homogeneous
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INTRODUCTION

Wayvelet bases are often presented as a powerful tool to perform the ap-
proximation and the numerical resolution of partial differential equations.
Indeed, thanks to zero moment and localization properties, wavelet spaces
are self-adapted to the solution and therefore may allow fast and accurate
resolution. In the last few years different algorithms have been successfully
tested on linear and non-linear equations [9] [12]. Nevertheless, most of the
addressed problems where posed in the periodic framework which circum-
vents the difficulties generated by general boundary conditions, but-which
makes nearly impossible the treatments of real problems.

It is known [3] that under very general hypotheses, one can only consider
homogeneous conditions. Therefore, we are driven to the construction of ap-
proximation spaces for homogeneous functional spaces on the interval. For
example, for problem involving homogeneous Dirichlet conditions on [0, 1],
i.e u(0) = u(1) = 0, the solution u could be reached in the Sobolev space
H}([0,1]) = {u € H*([0,1]),u(0) = u(1) = 0} and this leads to the construc-
tion of approximation spaces for Hj([0,1]). Various constructions have been
proposed (see Auscher [2], in [4] and references in it) but are not, according to
their authors, numerically tractable. The proposed construction follows the
one of Cohen et al. ([1]). After a short recall of this preliminary construction
we introduce and analyze the homogeneous space construction. Numerical
details are provided.

I THE PRELIMINARY CONSTRUCTION
OF COHEN, DAUBECHIES AND VIAL

This construction of wavelets on the interval, ([1]), is derived from the com-
pactly supported wavelet multi resolution analysis on the line introduced by
I. Daubechies [5].

In the case of L%(JR) this multi resolution analysis is classically given by
a sequence of closed subspaces V; satisfying:

1) .. C V_l C % - Vi C ‘/2 C LZ(R), ﬂieZV} = {0} and UJ'EZ‘/J' =
L*(R)




Moreover, each V; is spanned by the translations of the dilated version of a
fixed function, the scaling function 8, i.e V; = span{2/2¢(2!. - k), k€ Z}.
Here, the family {2//2¢(2/. — k), k € Z} is orthonormal and ¢ is on the
one hand compactly supported and on the other hand such that its Fourier
transform qAS satisfies the Strang and Fix approximation rules of order N-1
(7],
d™(2kr) =0, ke Z\{0}, n=0,..,N-1 (1)

One consequence of (1) is that the family, {¢(. — k), k € Z}, can
reproduce locally the polynomials of degree at most N — 1.

The support of ¢ is the interval [-N + 1, N] and the regularity of ¢ is
asymptotically C%?" [5]. Moreover, ¢ is solution of the following scaling
equation:

N
$(z)= D hip(2z —k). . (2)
k=—N+1
The detail spaces W; are defined as the orthogonal complements of V; in
V}+1’ Le,

Wi =Viun (V}')l (3)

and, thanks to ¢)

U W, = L*(R).

j€z
The essential feature of multi resolution analysis (see Y. Meyer {11]) is that
1) such that Vj € Z

W; = span{2?p(2. — k), ke Z}.

Again, the family {29/%¢(2/. — k), k € Z} is orthonormal. The function
7 is here a compactly supported wavelet and is obtained from the following
detail equation

W)= S gud(2e— k) (4)

k=—N+1




Moreover supp(¢) = supp(¢) and ¢ has the same regularity as ¢. In addition,
because of the approximation properties of Vy and the definition of Wy, 9
has got IV vanishing moments, i.e:

/:clll)(x) =0 1=0,.,N-1

Finally, the family {¢;:(z) = 29/%(2z — k)} is an unconditional basis for
various functional spaces such as Holder spaces C°(IR) or Sobolev spaces

H*(R)'.

In [1], the goal of I. Daubechies et al. was to construct a family of wavelet
basis on the interval [0,1] able to characterize L(]0,1]), H*([0, 1]) or C*([0, 1])
while preserving the most attractive properties of multi resolution analysis
of L?(IR), despite the lack of shift invariance of L?(]0, 1]) (this is not the case
for the constructions of P. Auscher ( in [4])).

We give in the following paragraph an outline of the construction but the
reader should refer to [1] for details.

The construction is performed in two steps as follows.

The first step consists in defining suitable subspaces of L*([0,1]) from
a basis essentially constructed from the translated versions of a rescaled
function, while the second step consists in the construction of the detail
spaces with the same requirement.

More precisely, in the first step, V;([0,1]) is constructed as follows:

Thanks to the compact support of ¢, for large enough values of j and
k=N,...,22 — N — 1, the support of the functions ¢(2/z — k) is included in
[0,1]. Therefore, the corresponding functions may be used as the interior basis
functions of V;([0,1]) and the set &; = {¢(2’z—k), k=N,..,.20 = N—1} (;
stands for interior) is then defined. To fully define V;([0,1]), N edge functions
are added at each boundary of [0,1] to complete the basis ®;. These two
families of N functions, ®go = {93, k¥ =0,..., N-1} and @g; = {¢},, k=
2/ — N, ...,2" — 1} are constructed to have mlmmal support and, such that
the order of approximation, (/N), related to the interior functlons is kept.
In other words, all polynomials of degree less than N — 1 should be locally
expandable as a linear combination of the basis functions of V;([0, 1]). Let us

'We remind that , s € R, f belongs to H*(T) if and only if 3, . |[f(n)|2(1 + n?)* <
+00 and that for 0 < a < 1, f € C* if and only if |f(z + h) — f(z)| < C|h|* for every
z,h in IR, the constant C not depending on x and h.
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recall the construction of ®z o (the same applies to g ;). The edge functions
®po are defined for k = 0,...,N — 1 as the restriction to [0,1] of a specific
linear combination of the family {¢(z — k)such that 0 € supp(d(z — k)}.
More precisely,

2N -2
@) =2 3 () 8@z +n—N+1) xon )

n=k

[02N1k

The supports supp(¢};) are staggered, i.e, supp(¢5;) = ] and 2,
is a polynomial of degree k on the interval [0,5;] (see Figure 1 for example).

Indeed, 3, n*é(z —n) is a polynomial of order £ {1] and (k) is a polynomial
in n of degree k.

By construction, ®go L @7 but @£ is not an orthonormal family. An
orthonormalization procedure using the Gram-Schmidt algorithm is then per-
formed. Starting from cpg?, N—1 down to cpg,o one obtains N orthonormal edge
functions {32] ., k=0,.., N—1} with staggered support [0, N + k] and still,
oy kl[o 2-i] 15 & polynomlal of degree k.

Fmally, :([0,1]) is then by definition generated by the orthonormal family
SpoUOU Pr 1

(6%, k=0,..,N—-1}
U
Vi([0,1]) = span§ {¢jr, k=N,..,2 =N -1} (6)
U
{95},10 —2J _1}

with é; = 2//2¢(2'z — k). One gets
Vio ([0,1]) € Vipa([0,1]) C .. € V;([0,1]) C ...L([0, 1])

where jo is chosen so that support(®g o) N support(®g1) = 0. As @k, the
edge functions satisfy a modified scaling equation (2), one writes

N-1 N+2k
(15_(7)',14: = Z h%,n¢?+l,n + Z hg,néj'f'l:n k= 07 ey N-—-1 (7)
n=0 n=N

The numerical values of the coeflicients {h,c w no=0,.,N + 2k; k =
0,...,N—1}and {A},, n=3%2—-N—-2k-3,..,2'-1; k=2f -1}
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for the right edge, are computed in [1].

The second step of the construction is the definition of a suitable basis

for the usual wavelet space W;([0,1]) = V;41([0,1]) N ( 7 (10, 1]))-L. Thanks
to (3) and to the compact support of %, for large values of j , the family
Uy = {2z —k), k=N,..,22 — N — 1} belong to W;([0,1]). Wavelets
of this family constitute a first part of the basis of W;([0,1]) and are called
the interior wavelets. Since dim(W;([0,1]) = 2/, N other wavelets at each
edge should be added to ¥;. Again, we only recall the construction at the

edge = 0. The complementary wavelets are deduced from the definition of
W;([0,1]) as

N-1
¢?k = 95?-{-1,]9 - Z <¢?+1,k’ @?,n) (15_(7),71 k= 07 ey N-1 (8)

n=0
where (.,.) stands for the scalar product of L?([0,1]). By construction they
are orthogonal to V;([0,1]) and to the interior wavelets. Their supports are no
longer staggered, but an iterative process described in [1] reduces the support
of ¥% to [0 Nikl instead of [0,22=1]. The last step of this construction

Y 27 27
consists again of a Gram-Schmidt orthonormalization. Starting from k=0

up to N—1 one gets N orthonormalized wavelets for the left edge, {z/;Jk , k=
0,..., N — 1}. These wavelets are known through the coefficients {¢3 ,, n =
0,...., N+2k; k=0,...,N — 1} that occur in the modified details equation:

N-1 N+42k
J,k - Z gk n(10]+1 n + Z gkn¢]+l n k= 0, ceey N-—1. (9)
n=N

W;([0,1]) is therefore entirely characterized by

{wjk, k=0,..,N—1}
U
W;([0,1]) = span{ {¥j, k=N,. -N-1} (10)
U
{¢] k» - 2] - 1}

Since

L*([0,1]) = V,, ([0, 1)) €D W;([0, 1))

Jj2jo




one gets an orthonormal basis of L*([0,1]) as

{95_?0,};, k= 07 ""N - 1} {":by ks -7N - 1}
u U _
{quo,kv k=N,..,2"° — N — 1} U {¢jka k=N,..,22 — N — 1}
U 32J0 U
Gl k=20 N1 | | (G k=2 N2 o)

(11)

Remarks:

As we have said before, these wavelets bases are very attractive because
they preserve the main features of the whole line construction. More pre-
cisely, since the edge functions are finite linear combinations of some shifts
of ¢, they have the same regularity. From their definition the edge scaling
functions generate all the polynomials up to degree N — 1 which ensure an
order N approximation over all the interval, and the existence of N van-
ishing moments for the edge wavelets. With these oscillations and enough
regularity, these wavelets basis form an unconditional basis for the Holder
spaces C*([0,1]) [1]. The fast wavelet transform [10] which is essential for
most numerical applications is preserved even near the boundary thanks to
the modified scaling, (7) and detail, (9) relations.

Our aim is to adapt this construction to obtain wavelet families generating
functional spaces with homogeneous boundary conditions. More precisely we
will consider the following constraints

Fe(0) = FE ) =0,

where f() is the i-th derivative of f.
As will be shown, most of the above construction will be preserved as
well as numerical efficiency.




II MULTI RESOLUTION ANALYSIS WITH
HOMOGENEOUS BOUNDARY CONDI-
TIONS

This section is devoted to the construction and the properties of compactly
supported wavelet satisfying homogeneous conditions of type f(¢29)(0) =
f(CLl)(l) =Q.

The starting point has been described in the previous section and, keeping
the same notations, we now assume that the compactly supported wavelets on
the line satisfy 0 < CL0,CL1 < N —1 and r > maz(CL0,CL1). Therefore,
the spaces V;([0,1]) defined in (6) are included in C*([0,1]) with r > s >
maz(CL0O,CL1).

I1.1  Construction

As in the previous section, we only focus on the left edge 2 = 0.
According to (6),every function f; € V;([0,1]) is written

N=1 27-N-1 271
filg) =Y cixfou+ D cikbikt D CikPix (12)
k=0 k=N k=23~-N

Moreover, only the left edge functions ®g o are non zero around =z = 0 and

then
N-1

7900) = X cia(#5) ). (13)
k=0

Therefore one way to impose f{°L9(0) = 0 is to enforce that all the left edge
scaling functions satisfy this condition. Following P. Auscher (in {2]), this

constraint can be related to a polynomial behavior.
Indeed, from the last section we learned that g&?yk is a polynomial of de-
gree N — 1 on the interval [0,5;], say for example p;i(z) = a%; + ol x +
.+ a}'zN"1. The CLO0-nth derivative of ¢9; at 0 is then equal to a$F°.

) (CLo)

Therefore (@?,k (0) = 0 <= a§f® = 0. The construction of scaling

functions satisfying ¢(°29(0) = 0 is then equivalent to the construction of
edge functions such that their restrictions to [0,277] as no component on the

7




monomial z€L°.

The first step of our algorithm is then to construct a family of NV edge
scaling functlons Opo = {95? "t k=0,..,N—1} and one of N edge wavelets
Ugo= {1,&] w, k=0,..,N—1} with the particularity that only one scaling
function and one Wavelet contain £¢° on their polynomial part. The second
step is to remove the scaling function containing z°%° and to modify the
corresponding wavelets. For simplicity we work on the interval [0,+oo with
a zero dilation scale (j = 0), omitted in the next notations. Moreover, we
call pr(2) = a2 + ajz + ... + afz® the restriction of }(z) on [0,1].

We start with the first N edge scaling functions (5) of section I. They are
defined with the coefficients of ,, so that

3N=2k-2
iz Z o ph(22) + Y, (2 -n) k=0,.,N—1(14)
n=0 n=N

(see [1] for the computation of these coefficients). The following proposition
tells us how to modify ¢ to eliminate zCL° in the polynomials py, k # C'LO.
We call 39 the new functions and px(z) = Yi=h aiat

Proposition IL.1 The family {¢}, k=0,...,N —1} defined by:

% =) kE=0,..CLO (15)
3 =% — Moy k=CLO+1,..,N—1

with

O‘%Lo,k + zi'c:_éL0+1 O‘?,k/\i

0 0
Corocro — XLk

Ak =

is such a$° = 0,Vk # CLO.




Proof:

The existence of A; is always ensured for k # CLO since af, = 27F
[1]. Because pj is a polynomial of degree k, there is nothing to change for
k < CLO, and therefore ¢ = ) as well as px(z) = pr(z) for k < CL0. Given
k > CLO0, let us suppose that VI < k,[ # CLO aCLO = 0. From relation (14)
we obtain the following scaling relatlon for @9:

Goz) = T=F M (ad; — Moo #7(22)

+Ax cLo ¢%L0(2$) + 02,0L0+1 @%Lou(zx) +.t ag,k 952(235)

Ei]XNZk 2( - )‘kacm 2 82z —n)
(16)
where
k-1
Akcro = ag,CLO — Ak (CV?;LO,CLO - ag,k) + Z O‘?,k)‘i'
i=CLO+1

Since ¢(2z — n)|o,1/2) = 0 for n > N, the contribution of the third RHS
term of 16 to 53 is 0. Moreover, for 0 < i < k, 3?(2z) = p?(2z) are polynomial
with no component on z¢2°. Therefore, the contribution of 7} to z¢° is
entirely due to Arcro and Axcro = 0 is the condition we are looking for,
that completes the proof. =m

For k > C'LO the supports of ¢} are no longer staggered but, in compen-
sation VK, 0 < k< N — 1,952“0,1] is still a polynomial of degree k. Therefore
the functions ¢2,0 < k¥ < N — 1 are independent. Moreover, they are or-
thonormal to the {¢(z —n), n > N} since they are linear combinations of
the {¢©}, k=0,..,N—1}.

Following the previous section we now orthogonalize the family {32,0 <
k < N —1}, keeping the “monomial independence.” The only thing to do is:
to exchange the place of ¢2; o and @%;_; before starting the algorithm from
index 0 up to N 1. The result is an orthonormal family of N edge scaling
functions {@>* . k =0,..., N — 1} with the particularity that only ps;_,, the
restriction of L,DN_I on [0,1], contains z¢L°. They satisfy a modified scaling
equation:

3N-2

ZHkngo“m ZH,M -n)  k=0,..,N—117)

n=0




with HY y_; =0for k=0,...,N 2.

The construction of the N edge scaling functions for the right edge comes
from the same algorithm for the half line ]-00,0]. The {¢}*, k=2 — N +
1,...,29 — 1} are independent of X! and only QE;JJ; N contams this monomial
on [0,1].

After a dilatation of 2/ for the 0 and 1 edge functions and adding the

' — 2N interior scaling functions ¢;x, one gets therefore a new orthonormal
basis of V;([0,1]), the space defined by (6). In this family, only cﬁ?”é‘m (resp.
$:511) contributes to 20 (resp. ) on [0,27] (resp. [1 — 27/, 1]).

To perform our first step of construction we now continue by isolating a
single wavelet containing €% on [0,1/2].

As in the previous section N wavelets at each boundary should be added
to the interior family ¥;. Focusing again on the left edge, we construct a
first family following (8) as

N-1

Yi(2) = @y (22) — D (Gy(20), 854 (2)) gut(z)  k=0,.,N-18)

n=0

Again, each function ¥3(z) is polynomial on the interval [0,1/2].

However, since for all k, 1 depends on @, all the ¢¢ contains the
monomial X0 and are therefore not suitable for our first step (we remind
that we want to construct a family of edge wavelets such that only one
contains L% on [0,1/2]). Still, from (17) and (18) we deduce a modified

detail equation for these functions that writes

3N-2
Zﬂkneo“ 20)+ Y. Bl 2:E—n) k=0,..,N—1.(19)
n=0 n=N

The following proposition tell us how to transform the functions %2 to reach
our first step.

Proposition IL2 The family ¥go = {49, k=0,...,N — 1} given by:

70 _ 0 _ 0 - _ 0
{ gg = '(-/ik'%boﬂk'l/)]v_l k 0, -.-,N 2 with e = /Bfk,N—l (20)
N-1— ¥N-1 N-1,N-1

is such that only the restriction of %_, to [0,1/2] contains zCL0.

10




Proof: In (19) the monomial C° is present only in @N=,. Writing the
details equation for 7/ and canceling the coefficient of gb?(,fl gives the desired
result. =

As previously, we apply a Gram-Schmidt orthonormalization that pre-
serves the above property. Indeed, starting from 9 we get an orthonormal
wavelets family U o = {0, k =0,..., N—1} for which only ¥%x>, contains
2L on [0,1/2]. These wavelets are defined using the details equation

3N-2
Z GRa.ot(2z)+ Y. Gi.9(2z—n) k=0,..,N—1(21)
n=0 n=N

It only remains to make this construction again for the right edge with
monomial z¢F! and to expand all the boundary wavelets of a factor 2/. To-
gether with interior wavelets family ¥y, they form an orthonormal basis of

w;([0,1])-

We have now reached our first step since we have constructed a basis
of scaling functions for V;([0,1]) and a basis of wavelets for W;([0,1]) such
that in each family, only one function has a component on z%° on [0,1/2]
and only one function has a component on z¢* on [1-1/2].

As announced, we now perform the second step of our construction by

removing the function 55?7’]{}_1 on the left edge and the corresponding ones,

‘ﬁ;;} _n» for the right edge.

The last technical point is the modification one should make to the wavelet
space. We have the following proposition:

Proposition IL3 Define the subspace V;([0,1]) as
Vi((0,1]) = V;([0,1]) ~ span{ 3y s &)} (22)

Replace the two wavelets @ZNJ?’}#_l and &;;_N in the families Ygo and ¥g, by

) = ‘19531# 1+b¢JN 1
(23)
6} = a'go;;; N T bl¢] 2_N

11




with a and b solutions of
{ aHR/'—l,N—l + bG?\/’—l,N—l =0

a2 +b0*= 1

(24)

and a’, b’ solutions of the same set of equations with coefficients for the right
edge.

Then the new family ¥ U¥U¥E, is an orthonormal basis ofW ([0,1)),
the orthogonal complement of V;([0,1]) in V].H([O 1]). Moreover every scaling
function of V;([0,1]) and every wavelet of W;([0,1]) satisfies the homogeneous
boundary conditions f(€LO(0) = fCLI(1) = 0.

Proof: We prove only the result for the left edge.

Let us first recall that <p N , and Q/J] '~y are respectively two basis func-
tions of V;([0,1]) and W; ([ 1]), and that V;([0,1]) L W;([0,1)). 09 i
then orthogonal to all the other basis functions of V;([0,1]) and w;([o, 1])
Moreover,||©9]|3, = 1 if and only if a®+5” = 1. The same argument holds for
@1 and therefore, with the new definition of ¥g o and ¥g 1, YpoU¥Y;U¥g,
is a family of 27 orthonormal functions.

Using the scaling (17) and detail (21) equations we get

N-1 3N-2

0f =2 (aHN 1 0GRy n) Frn + D (aHR’—l’n + b6 —1”1) ZEE g
n=N

n=0

Taking into account (24), we get that that ©F is independent of 4,5?3:‘1’,\,_1 and
consequently belongs to Vi1([0,1]). Since the orthonormal collection ¥g,oU
;U ¥g; generates a closed subspace of V]+1([0 1)), orthogonal to V;([0,1])
and of dimension 2/ = dimVj,1(]0,1]) — dimV;([0,1]), it is by definition
W;([0,1]) the orthonormal complement of V;([0,1]) in Vier([0,1]).

Remarks:
All these edge functions have the same regularity as the initial scaling
function ¢.
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Moreover the 2N — 2 edges wavelets constructed before we remove @?,’IJ\;_I
and Q&;”;_N, have conserved their N vanishing moments. The modified
wavelets ©7 and O} belong to W;([0,1]) and are therefore orthonormal to

all the polynomials included in V;([0,1]). But they have no reason to verify
(09,2°10) = (0],2°%) = 0, since these monomials have been excluded from

the edges of V;([0,1]). Hence only one vanishing moment for one wavelet at
each boundary has been lost.

As in the initial construction, the modified scaling and detail relations
insure that fast algorithms related to the different basis projections are avail-
able.

At this point however, we don’t know exactly what kind of space the
multi resolution family V;([0,1]) approximate. This is the purpose of the
next subsection.

11.2 Approximation results

We now check the intuitive result that the wavelet basis derived from the
last construction is an orthonormal basis for suitable homogeneous spaces
on [0,1].We give a complete proof for the Dirichlet homogeneous boundary
conditions f(0) = f(1) = 0,i.e, CLO = CL1 = 0, corresponding to H}([0, 1]).

Using our construction for CLO = CL1 = 0, we first obtain a subspace
V;([0,1]) defined by the orthonormal basis ®go U ®; U @, with the partic-
ularity that only two scaling functions are non zero at the edges. It is known
that under some specific conditions (see the previous section) V;([0,1]) be-
longs to a multi resolution analysis of the Sobolev space H*([0,1]).

Let us simplify the notations and write gZJ?”,j‘ = %, and ¢ = ¢ ,. Then
we have the following result:

Proposition I1.4 Let V;([0,1]) be the subspace spanned by the orthonormal
basis

{30 s Py - Hbins s Gi2i- N HH P 2o s i1 )

Assume these scaling functions have enough regularity to involve

U Vi((0,1]) = H'([0,1])

JZjo
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and that only go?,N_l and go},zj_N are non zero at (# and 1. Then

U Vi(0,1]) = U (V;([0,1]) = span{eln_s; 0%,y }) = Ha([0,1])

i2do J2jo

Proof: Take a function f in Hj([0,1]), and call II;(f) and IT;(f) its or-
thonormal projection onto V;([0,1]) and V;([0,1]). We have to establish the
relation

| dim I ~ B ()l =0 (25)
where the H'-norm is taken as ||f|[%: = ||fll%. + ||&L]|2.. Following the

density of V;([0,1]) in H*([0,1]) this is equivalent to
Jim () ~ ()l =0
Now using the orthonormal basis of V;([0,1]) and V;([0,1]) we have

IT5(f) = (Nl = 1 05— N5nallar + 1F 950 M) 9500wl

since the support of the 0 and 1 edges scaling functions do not overlap.
Because ||¢9 y_;llz2 = 1 and ¢%y_; belongs to H'([0,1]) (due to the regular-
ity of the initial function ¢), we have

I (f) = Tl < G127 (1(F, onoo)] + 1 2 ai-m)])

where C; is a constant independent of 7. Therefore we have to check that
Jim PNf eina)l = lim 27 0ipn)] = 0
To see this, we use the inequality

2|(f,¢fn-1)| < Coll fll (26)

with C5 independent of 7, which will be justified at the end of the proof. Let
us take now a sequence of functions (f,),en convergent to f with respect to

14




the H'-norm, for example f,(z) = f(z)x11-1)- Applying the last inequality
to f — fn we get "

CP|(f ~ )] S Callf = fullmn

It only remains to note that there exist an integer J, dependent of n, for
which

V] 2 Ja 23|<f - fm‘P?,N-1>| = 2j|<f7 @?,N—-l)l'
Indeed, for fixed n we take J such that the supports of 9§ _; and f, do not

overlap. :
Making n tends to +o0, and consequently j, leads to

j_ljfloo 2’[(f, @?,N-l)l =0.

Obviously the same arguments holds for the scalar product 27|(f, Lp?ﬂj_N)l
and the proposition is proved. m

We still have to establish the inequality (26). An integration by parts
implies that

Of 1 y=
[(Fs w-a)l < 51l =50 e
where Z0 is a primitive of ¢ y_;. Since ¢9 y_; belongs to L*([0, 1]) we deduce
120122 < C4277.

This assumption and the definition of the A 1—norm~ leads to the desired result.
Thanks to this proposition and the definition of W;([0,1]) (see prop 11.3) we
deduce a decomposition of H([0,1]) in term of wavelet basis,

Hy([0,1]) = Vi, ([0,1]) €D W;([0,1]). (27)
320
Remarks:

The proof for Neumann homogeneous conditions is similar and involves
the H%-norm. More regularity is therefore needed for the basis functions and
a double integration by parts to the inequality corresponding to (26). In that
case, the approximated space is the strict subspace of H?([0,1]) defined as

{f € H*([0,1]), f(0) = f(1) = 0}.

15




Some mixed homogeneous boundary conditions, for example f(0) = f(1) =
fM(0) = fM(1) = 0, could also be addressed with a similar construction. In
this case, two scaling functions at each edge are removed from V;([0,1]) and
are employed to modify the wavelets of W;([0,1]). This construction leads
to a characterization of the functional space
H2([0,1]) = {f € H*([0,1)), f(0) = f(1) =0 and fP(0) = fN(1)=0}.
Since the left and right basis functions do not interact at scale 7, different
conditions could also be taken at 0 and 1.

The following section is related to the numerical estimates related to our
construction and to various topics connected to its application for partial

differential equation problems.

III NUMERICAL ESTIMATES

This section is devoted to the numerical estimates related to our construction
for two cases of homogeneous boundary conditions, i.e, the Dirichlet condi-
tions and the Neumann conditions. All the following computations have
been carried out beginning with the initial compactly supported function ¢
closest to linear phase constructed by I. Daubechies [6] with N = 4. Since
no explicit analytic expressions exist, this function is defined through the
filter coefficients h,, used in the scaling equation (2). These coefficients are
provided in [6]:

h_s = —.07576571478950, h_p = —.2963552764600, h_; = .4976186676328
ho = .8037387518051, hy = .29785779560531, hy = —.0992195435766
hs = —.01260396726203, hs = .03222310060405.

The corresponding interior wavelet 3 is defined using the coefficients g, of
the details equation (4) with g, = (—1)"hon41-n.

III.1 Dirichlet Boundary conditions

The application of the last section algorithm with CL0 = C'L1 = 0 (Dirich-
let condition) leads to a multi resolution analysis of Hg([0,1]). Three scaling
functions and four wavelets have to be added at each boundary (see section
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IT). These scaling functions are solutions of a modified scaling equation (17)
and are therefore characterized by the coefficients HY, and H;,. The cor-
responding numerical estimates (computed on a 16 decimal digits computer
with an error smaller than 107'1) are listed in Table 1. The coefficients G},
and G}, which occur in the modified detail equation (21) are listed in Ta-
ble 2 and define completely the edges wavelets. All the following figures are
obtained using the cascade algorithm [6]. The three z = 0 edge scaling func-
tions, as well as the three z = 1 edge scaling functions, are represented on
Figure 2 at scale j = 0. The corresponding wavelets are plotted on Figure 3.
Notice that due to the lack of symmetry of the initial scaling functions and
wavelets, the z = 1 edge functions can not be deduced from the z = 0 edge
functions using a simple transformation.

II1.2 Neumann Boundary conditions

The same numerical estimates corresponding to the Neumann conditions,
i.e CLO=CL1=1, are listed in Tables 3 and 4. The Figures 4 and 5 repre-
sent respectively the scaling functions and wavelets of this multi resolution
analysis.

Remarks:

Some zero coefficients are provided in Tables 2, 3 and 4. They are ex-
pected as follows: for instance in Table 3 Hy, = HJ, = 0; since the scaling
functions ¢, for the Neumann conditions, is by definition constant on the
interval [0,1], it does not depend on ¢f ; and ¢3 , which are respectively poly-
nomials of order 1 and 2 on [0,1/2]; this leads H{, = H{, = 0 in Table 3.
Others zeros are expected using the same arguments.

I11.3 Quadrature formula

In order to use these wavelets basis for numerical purposes one question
needs still to be answered. Given a function f, how can we define a projection
V;([0,1]), i.e, how can we estimate a set of coefficients c;; occuring in relation
(12) and corresponding to f? The solution proposed here aims to compute
an approximation of the orthogonal projection of f on V;([0,1]) defining
quadrature formula to estimate the coefficients c;x = [ f¢g,. We define
below a quadrature formula of order N — 1 in the same philosophy as G.

17




Beylkin et al. ([8]) or W. Sweldens et al. ([13]). We are therefore looking for
weight coefficients w; ; such that

/ feon ™ Z wi e f(a) (28)

=0

Where the {a;, i=0,..,N —1} are N given points taken in the support of
990 , and such that the approximation is exact for the polynomials of degree
less than or equal to N — 1.

It appears that the weight coefficients w; ; are the solution of the following
linear system:

/m@ok—Zw,ka,l l=0,..,N—1 (29)

Hence we need to evaluate the first N moments of every edge scaling function.
Multiplying the modified scaling equation (17) by &' leads to the N — 1
equations:

/x‘Pok

Since the moments of order I of the interior function ¢, [ z'¢(z), can be esti-
mated using the classical recurrence relation given in [8], (30) finally leads to
the following linear system AX; = b; where the N dimensional vectors X; and
Xl(k) = fa: ‘Po,k( )
b, are defined as and ,
bl(k) = Eijzv]—\-fz Hl?,nfxlqs(zr - n),k = 07 ey N -2
and where the entries of the matrix A depend only on the Hy,. We easily
checked that this matrix is always nonsingular. (to see this, use the fact that
oo [HR,l < 1 since |l@g illze = 1.
We first provide the numerical values of the moments of order [,0 <1< 3
for N =4:

M, = 1.00000000000e+00 M; = -1.45319345240e-02
M, = 2.11177120898e-04 M3 = 4.34510522842¢-02

3N-2

ZHkn/x%n (22)+ > H,?n/x’d)(Qw——n) k=0,..,N-2

n=0 n=N
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Then, the entries of X; for I = 0,..., N — 1 for the 0 and 1 edge scaling
functions corresponding to Figure 1 (Dirichlet boundary conditions) are listed
in Table 5 and 6.

Using the values of these moments and the N given points a;, we find the

weights w; i, for every edge scaling function solving the linear Vandermonde
system (29).

Remark:

A quadrature formula of same order has to be used to estimate the in-
terior scaling coefficients ¢;z = [ fé;x, N < k < 20 — N — 1 to preserve a
constant order of accuracy all over the interval.

Acknowledgments:
This work has largely profited from discussions with Philippe T'chamitchian
and special thanks are due to him.

IV . CONCLUSION

Compactly supported wavelets satisfying homogeneous boundary conditions
on [0,1] have been constructed. All the tools required for the use of these
functions for numerical approximation of partial differential problems have
been detailed.

Even if all this construction extends by tensor product arguments to
higher dimensions, efficient handling of general open sets with boundary
conditions is still an open problem.




LIST OF SYMBOLS USED

The IATEX code of the mathematical symbols used is given to clarify their
identity:

A

3([0,1]) : H"1_0([0,1]) and a similar code for L*(RR) ; H'([0,1]) ;
2

1
(0. % 0*((0,1); ~
2([0,1]) : \tilde{V}_j([0,1]) and same for W;([0,1]); V; ; W;; Vi([0,1])

W;([0,1])

(R

U V;: \overline{\bigcup{j \in \Z} V_j} and same for NV, U W,

Jj€Z JEZ J inZ

™ (2kx) : {\hat \phi}~{(n)}(2k\pi) ;

QISJ"k : \Phi_{j ,k} 3

®ro: \phi_{E,0}; ®;; 5

552’; : \tilde{\varphi}~{0,\perp}_{j,k}; The same expressions are us-

ing substituting \varphi by \psi and \Phi by \Psi.

(:) : \Bigl("{n}_{k}\Bigl) ; (,): \langle , \rangle; 0
\emptyset

hY,: b 0_{k,n};h},;9R. ; 9k, and the same expressions with uppercase

H and G.

fOLO) . £~{(cLO)} ; f(CLY) ; pix:  p{j.k}; =
\Longleftrightarrow

At : \lambda_k; pr s \mu_k; o, : \alpha"0_{k,n}.

B2, \beta”0_{k,n};©%: \Theta j"0; Wl o NNT{ H 1Y
IL(f) : \Pi_j(£); 8/ . \frac{\partial £}{\partial x}

X[t -1t \chi_{[\frac{1}{n},1-\frac{1}{n}1} ; E?: \Xi_j~o.

~: \approx;
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FIG. 1. The edge scaling functions @5, and @), for N=2. ¢}, is constant
on [0;1] and ¢, is a polynomial of order 1.




Table 1: The left and right filter coefficients, HY, and H},, for
the construction with Dirichlet homogeneous boundary conditions

f(0)

Note: For the right edge (z = 1) the coefficients {Hj .} are related to the scaling function
gojl. 5;_3 and are listed from right to left. The case n=3 corresponds to the scaling function

£(1) =0,

n 1Y, I,

k=0 0 6.3091928199%e-01  5.9981737601e-01
1 9.6514114329e-02  1.0261005527e-01
2 3.9878718285e-02  2.2276045032¢-02
4 -3.9847422688e-01 -3.8101599048e-01
5 -4.6171223341e-01 -3.5419483844e-01
6 -4.3450617898e-01 -3.7772113863e-01
7 -1.6823324724e-01 -4.0626758997e-01
8  3.9512280064e-02 -2.2139835764e-01
9 7.4334018686e-03  1.5553422358e-02
10 -1.9004116026e-02 3.9763630210e-02

k=1 0 -7.1465107925e-01 -6.7917200335e-01
1 1.0487856031e-01  7.0564886681e-02
2 -1.0275008552e-01 -6.1435155066e-02
4  -2.2668171853e-02 1.0664567825e-01
5 -3.4790471529e-01 -6.9557725550e-02
6 -5.4438357904e-01 -3.1266913055e-01
7 -2.1013565982e-01 -5.5031934226e-01
8 7.1146281575e-02 -3.3164862537e-01
9 8.8701254411e-03  2.0464047232e-02
10 -2.2677220474e-02  5.2318055022e-02

k=2 0 -2.2362773506e-01 -3.4534868269e-01
1 5.0082651220e-01  3.9554860545e-01
2 -1.1707940876e-01 -5.1663829154e-02
4 -7.0092772722e-01 -3.4828534215e-01
5 -4.8072499606e-02 -5.6934808461e-01
6  4.1374409814e-01 -1.6719040087e-01
7  1.2755670687e-01  4.0449494649e-01
8 -6.4838220288e-02 2.8819962720e-01
9 -4.9723065158¢e-03 -1.4195865812e-02
10 1.2712119110e-02 -3.6292922913e-02

we have removed and will therefore not appear.
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Table 2: The left and right wavelet filter coefficients, G, and G},
for the construction with Dirichlet homogeneous boundary condi-

tions f(0) = f(1) = 0.

0
Gk,n

1
Gk,'n

k=0

OO0 TDU N DD W©00 -GN OB

[
(]

k=2

e R S N

O ~J O Ot N~ O

9
10

2.0137223334e-01
5.4229707169e-01
-7.0645626067e-01
3.5108313491e-01
1.5369973568e-01
-1.0259167455e-01
-7.5615428961e-02
5.5724919877e-02
2.6185470422e-03
-6.6945353810e-03
-6.6848468945e-14
2.8233692882¢-02
-5.7322775598e-02
5.9385536874e-02
-1.1474607116e-01
-2.9055557195e-01
8.0074010314e-01
-4.9704917725e-01
-2.9500466849e-02
7.5420420519e-02
6.2086522836e-14
-1.4802084915e-14
6.7504052837e-02
-3.6141627882e-01
7.8642373898e-01
-4.9310306778e-01
2.1421713460e-04
9.656495824 3e-02
-1.0869221407e-03
2.7788077166e-03
-2.5584258650e-02
-6.5876783667e-01
-6.8353593454e-01
-3.0331012100e-01
-3.7971289157e-02
6.7315440450e-02
1.0944670231e-02
-7.6074757976e-03
-3.8773215636e-04
9.9126981384e-04

2.4372875232e-01
4.5801973839e-01
-3.4317083287e-01
7.4312944286e-01
-1.4784113471e-01
-1.8898503160e-01
4.5387871214e-02
3.3997823918e-02
-1.5613217459e-03
-3.9916501406e-03
8.0232416876e-14
3.8745242758e-01
-6.7680392343e-01
-3.9552887470e-01
3.7058026047e-01
2.8173001140e-01
-1.0486107295e-01
-8.7104529274e-02
3.4442984618e-03
8.8056382200e-03
-5.0803891077e-13
-4.0101204690e-13
1.0243645353e-02
1.1309599230e-01
-5.4953710005e-01
7.6956164180e-01
-2.8909897939e-01
-9.0339164667e-02
1.2346812450e-02
3.1565662736e-02
-1.6585775990e-02
-6.842014393%-01
-6.4585264939e-01
2.5993685887e-02
-2.7855694418e-01
-1.5252127585e-01
8.7162800751e-02
7.2638444593e-02
-2.8584982261e-03
-7.3079907303e-03

Note: For the right edge (z = 1) the coefficients {Gj ,} are related to the wavelet ¥} ,;_,
and are listed from right to left. The case n=3 corresponds to the scaling function we have

removed and will therefore not appear.




Table 3: The left and right filter coefficients, Hy 6 and H;,, for
the construction with Neumann homogeneous boundary conditions

F0(0) = FO(1) = 0.

4]
H k,n

1
Hk,n

OOW~TO U RN ODO©OOTDU RN OE ©WDU RN~ O

—

7.0710678119e-01
0.0000000000e+00
0.0000000000e+-00
3.7875157560e-01
4.1933439083e-01
3.9462541967e-01
1.5279210977e-01
-3.5885680933e-02
-6.7511337557e-03
1.7259840309e-02
-6.3999878989%¢-01
2.7256158164e-01
2.8255565264¢-02
9.3033115429e-02
3.9549596240e-01
5.4799002074e-01
2.1165351693e-01
-6.7366756980e-02
-9.0159055096e-03
2.3049919460e-02
6.3813937293e-02
-6.2433761707e-01
-7.3965386969¢-03
-6.2421804274e-01
-1.3488453082e-02
4.3699790930e-01
1.4222943082e-01
-6.9374369289%-02
-5.5998777298e-03
1.4316557613e-02

7.0710678119e-01
0.0000000000e+-00
0.0000000000e+-00
3.3279641360e-01

3.1763076592¢-01

3.3872841031e-01

3.6432796801e-01

1.9854306805¢-01

-1.3947818884e-02
-3.5658770113e-02
-6.2399400714e-01
2.4746950442e-01

2.1217268985e-02

3.1423763181e-02

1.5138263011e-01

3.4935923414e-01

5.4440142107e-01

3.2169170065e-01

-2.0365603789¢-02
-5.2066376096e-02
1.4204323343e-01

-5.3003493793e-01
1.7695538529e-02
-4.0650580195e-01
-4.9029535249¢-01
-9.0099784088e-02
4.3727314163e-01

3.0298274581e-01

-1.5509344332e-02
-3.9650941036e-02

Note: For the right edge (¢ = 1) the coefficients {Hg ,} are related to the scaling function
gp} 5i_3 and are listed from right to left. The case n=3 corresponds to the scaling function
we have removed and will therefore not appear.
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Table 4: The left and right wavelet filter coefficients, G}, and Gj ,,
for the construction with Neumann homogeneous boundary condi-

tions fM(0) = fM(1) = 0.

n G?:,n GI]‘.;,TL
k=0 0 2.1578281914e-01  2.3494978252¢-01
1 4.9572192648e-01  4.8386498781e-01
2 7.2238470640e-01  5.2859034242e-01
4 -3.9185512760e-01 -6.4278506397e-01
5 -1.2862537931e-01  4.9429597015e-02
6 9.6457537590e-02  1.2296776567e-01
7 6.4796296855e-02 -1.9638518548e-02
8 -4.7138054627e-02 -1.1782477983e-02
9 -2.2555618915e-03  7.3127496136e-04
10 5.7665333650e-03  1.8695658406e-03
k=1 0 5.2517520677e-13  5.5828490449e-14
1 2.4258207630e-02  2.0458047986e-01
2 6.0376140438e-03  5.9531516311e-01
4 2.2848095434e-01  5.4090218399e-01
5 -5.1810004520e-01 -4.1031183125e-01
6 5.6358588265e-01 -3.4180312799e-01
7 -5.2660919644e-01 1.2529183073e-01
8  2.8410901284e-01  1.0078064242e-01
9 2.0215169170e-02 -4.1780815641e-03
10 -5.1681777360e-02 -1.0681616333e-02
k=2 0 1.9660656197e-12 -2.7202352286e-12
1 3.0437460103e-12  -9.0382597736e-12
2 5.5424594564e-02  1.5213229661e-02
4 -2.7483194254e-01  1.2607094728e-01
5  6.0853476157e-01 -5.5744040614e-01
6 -1.0850026370e-01 7.6287424658e-01
7 -6.0447233132e-01 -2.8671529090e-01
8  4.1282047408e-01 -8.8419425836e-02
9  2.1554056091e-02  1.2267369323e-02
10 -5.5104754193e-02  3.1362559711e-02
k=3 0 1.9941691330e-01  1.8775994937e-01
1 5.3813012840e-01  6.1793471320e-01
2 -6.8862102186e-01 -6.0431561252¢-01
4  -4.2066297006e-01 -3.7019350637e-02
5 -7.4122879021e-02 -3.8404010349e-01
6 1.1518683604e-01 -2.0032106281e-01
7 2.1861286109e-02  1.3094817230e-01
8 -1.5750923988e-02 1.0691409643e-01
9 -7.6389913001e-04 -4.3365631441e-03

10 1.9529722670e-03 -1.1086787800e-02

Note: For the right edge (z = 1) the coefficients {G} ,,} are related to the wavelet 97 ,;_,
and are listed from right to left. The case n=3 corresponds to the scaling functions we
have removed and will therefore not appear.
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Table 5: The first four moments for the 0 edge scaling function
of Figure 2 (i.e satisfying Dirichlet homogeneous boundary condi-
tions).
X @0 ©0.1 Poz

0 | -1.80518411015e+00  1.58610287947e-01  1.42577315923e-01

1 |-3.45978990889e+00 -1.34279194417e+00 -1.66298580543e-13
=2 | -8.12722032481e+00 -5.41163047176e+00 7.89305924956e-01

3 | -2.13375831107e+01 -1.76739256352e+01  4.70776245989e-+00

Note: For this case the monomial  could be expanded as a linear combination of ¢ ,
and ¢ ;. This explains the zero value of the second moment of ©0.2-

Table 6: The first four moments for the 1 edge scaling function
of Figure 1 (i.e satisfying Dirichlet homogeneous boundary condi-
tions).
X ¢loo @01 — Poa

0 | -2.03632572831e+00  2.11233673136e-01  2.34792863276e-01
1|-5.17867977397e+00 -1.87776044074e+00 -4.21625644274e-13

2 | -1.57657032623e+01 -1.04701396775e+01  1.27839462595e+00

3 | -5.24899484894e+01 -4.53961860524e4-01 1.15515969500e+01

O W a—

Note: same remarks as Table 5 for the value of the second moment of ¢ ».
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a)The three scaling functions for the left edge

05 11
.0
-0.5¢ ] :
-1 -1
0 2 4 6 0 2 4 6
1
0
-1t
0 2 4 6
b)The three scaling functions for the right edge
0.5 - - - 1
0
0
-0.5¢ 1
-6 -4 -2 0 -6 -4 -2 0
1
0
-1 .
-6 -4 -2 0

FIG. 2. The siz edge scaling functions for the case N=4, represented at scale
j=0 (i.e. on [0,40c0] for the left edge and J—c0,0] for the right edge). All
these scaling functions satisfy Dirichlet homogeneous boundary conditions at
0. '
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a)The four wavelets for the left edge

2 4 6

-6 -4 -2 0 6 4 2 0
FIG. 3. The eight edge wavelets for the case N=4, represented at scale j=0
(i.e on [0,+oo[for the left edge and] —oco,0] for the right edge). All these

wavelets satisfy Dirichlet homogeneous boundary conditions at 0.
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a)The three scaling functions for the left edge

1 : : : 1
0.5F -
0
O L
-0.5 -1
0 2 4 6 0 2 4
1
0 L
-1 ’
0 2 4 6

b)The three scaling functions for the right edge

1 : - : 1

FIG. 4. Same as in Fig. 2 for the Neumann homogeneous boundary condi-
tions
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a)The four wavelets for the left edge

1

o
N
i-N
(o]

1t

0 ' 0

. N 1 __1 " " 1
-6 -4 -2 0 -6 -4 -2

FIG. 5. Same as in Fig. 3 for the Neumann homogeneous boundary condi-
ttons
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